cNMA: a framework of encounter complex-based normal mode analysis to model conformational changes in protein interactions
نویسندگان
چکیده
MOTIVATION It remains both a fundamental and practical challenge to understand and anticipate motions and conformational changes of proteins during their associations. Conventional normal mode analysis (NMA) based on anisotropic network model (ANM) addresses the challenge by generating normal modes reflecting intrinsic flexibility of proteins, which follows a conformational selection model for protein-protein interactions. But earlier studies have also found cases where conformational selection alone could not adequately explain conformational changes and other models have been proposed. Moreover, there is a pressing demand of constructing a much reduced but still relevant subset of protein conformational space to improve computational efficiency and accuracy in protein docking, especially for the difficult cases with significant conformational changes. METHOD AND RESULTS With both conformational selection and induced fit models considered, we extend ANM to include concurrent but differentiated intra- and inter-molecular interactions and develop an encounter complex-based NMA (cNMA) framework. Theoretical analysis and empirical results over a large data set of significant conformational changes indicate that cNMA is capable of generating conformational vectors considerably better at approximating conformational changes with contributions from both intrinsic flexibility and inter-molecular interactions than conventional NMA only considering intrinsic flexibility does. The empirical results also indicate that a straightforward application of conventional NMA to an encounter complex often does not improve upon NMA for an individual protein under study and intra- and inter-molecular interactions need to be differentiated properly. Moreover, in addition to induced motions of a protein under study, the induced motions of its binding partner and the coupling between the two sets of protein motions present in a near-native encounter complex lead to the improved performance. A study to isolate and assess the sole contribution of intermolecular interactions toward improvements against conventional NMA further validates the additional benefit from induced-fit effects. Taken together, these results provide new insights into molecular mechanisms underlying protein interactions and new tools for dimensionality reduction for flexible protein docking. AVAILABILITY AND IMPLEMENTATION Source codes are available upon request.
منابع مشابه
Biophysical and Molecular Docking Studies of Human Serum Albumin Interactions with a Potential Anticancer Pt(II) Complex
The interaction between [Pt(phen)(pyrr-dtc)]NO3 (where phen = 1,10-phenanthroline and pyrr-dtc =pyrrolidinedithiocarbamat) with human serum albumin (HSA) was studied by fluorescence, UV–vis absorption, circular dichroism (CD) spectroscopy and molecular docking technique under like physiological condition in Tris–HCl buffer solution at pH 7.4. UV-Vis absorption spectroscopy indicates that the pro...
متن کاملEfficient determination of low-frequency normal modes of large protein structures by cluster-NMA.
The structure-function relationship is critical to understanding the biologically relevant functions of protein structures. Various experimental techniques and numerical modeling methods, normal mode analysis (NMA) in particular, have been employed to gain insight into this relationship. Experimental methods are often unable to provide all the desired information and comprehensive modeling tech...
متن کاملCooperativity in biological systems
Living organisms can sense and respond to external and internal stimuli. Response isdemonstrated in many forms including modulation of gene expression profiles, motility,secretion, cell death, etc. Nevertheless, all forms share a basic property: they depend on sensingsmall changes in the concentration of an effector molecule or subtle conformational changes ina protein and invoking the appropri...
متن کاملInteractions of β-lactoglobulin with Cationic Surfactants: Spectroscopy Study
The interactions of β-lactoglobulin AB in the presence of cationic surfactants such as Cetyltrimethylammonium bromide and Cetyltrimethylammonium p-Toluenesulfonate have been investigated using a variety of experimental techniques such as conductivity, UV-Vis spectrophotometry and fluorimetry. The conductivity of surfactants aqueous solutions with β-lactoglobulin shows that the cmc of cationic s...
متن کاملHybrid-DFT study and NBO interpretations of the conformational behavior of 1,2-dihalodisilanes
Hybrid-density functional theory (B3LYP/Def2-TZVPP) based method and NBOinterpretation were used to investigate the conformational behavior of 1,2-dihalodisilanes[halo=F (1), Cl (2), Br (3), I (4)]. The B3LYP/Def2-TZVPP results showed that the anticonformations of compounds 1-4 are more stable than their corresponding gaucheconformations. The stability of the anti conformation compared to the g...
متن کامل